Mathematics for Elementary Educators—Multiplication of Fractions See all handouts attached

Objectives:	I can use an area model to explain the multiplication algorithm.	
Grade Level or	Mathematics for Elementary Educators	
Course Name		
Estimated Time	75 minutes (30 minute modified plan for interview)	
Pre-requisite	Multiplication of whole numbers and fractions. Addition of whole	
Knowledge	numbers and fractions.	
Vocabulary	Area Model, Distance = Rate times Time	
Materials Needed	Problem of the Day sheet, Four student samples sheet, Assessment	
	sheet	
Iowa Common	CCSS.6.PR: Understand ratio concepts and use ratio reasoning to	
Core Content	solve problems.	
Standards	CCSS.5.NF: Apply and extend previous understandings of	
	multiplication and division to multiply and divide fractions.	
Iowa Standards for	1. Make sense of problems and persevere in solving them.	
Mathematical	2. Reason abstractly and quantitatively.	
Practices	3. Construct viable arguments and critique the reasoning of	
	others.	
	4. Model with mathematics.	

<u>Launch (How will you engage students in the content for the day?)</u>

Introduce students to the POD:

During my lunch hour I usually walk $\frac{3}{4}$ a mile in 15 minutes. Today it started

raining 10 minutes into my walk and was unable to finish. How many miles did I walk instead? Explain how you arrived at your conclusion. Does your answer make sense? Why or why not?

Explore (How will students explore the content for the day?)

- Allow students ample time to explore the POD individually. Once students have a grasp on the problem have them share with a partner what they found and their justification.
- As students share, listen to conversations and look for different ideas to have students share. Ask students to share with the whole class.
- Ask the class how many students used multiplication to conclude ¹/₂ mile. How many drew a picture? How many used an area model?
- Introduce the four different student solutions. Have students work with their partner and fill out the second column.
- Students should share what they found with the whole class. Point out that student D has the best model for understanding the algorithm for multiplying fractions as the shaded area represents the numerator product and the denominator is represented by the shaded and non-shaded pieces representing the whole.

- Be sure to point out that Student A's model works well for this situation but would not work as well with $2/3 \times 4/5$. Why?
- Introduce the idea of d = rt and ask how this idea relates to this problem. Challenge students to determine the rate. This should result in a rate of 3 mi/hr. Write the equation d = 3t and ask students what the *t* is for this particular case (1/6). Discuss how to find 1/6 of 3 or 3 groups of 1/6.
- Hand out the final problem and explain that a student used a graph to show the product modeling the area idea presented by Student D. Have students work with their partner to determine what went wrong.
- Facilitate the discussion on what to do with the area model when one or both of the factors are greater than one.
- Introduce the idea of using the distributive property to accomplish this task. Pose 2 2

the question, "Does the distributive property work for $1\frac{2}{3} \times 3\frac{2}{7}$?"

• Facilitate discussion. Be sure to point out the use of "and" and its meaning in mathematics.

<u>Summary/Close of the lesson</u> (How will you close your lesson and bring student understanding to a close for the day?)

Ask students to explain how the area model works with fractions. Specifically ask students to find a product that can be represented by using Student A's method and Student D's method.

Extension(s)

Number line activity.

<u>Check for Understanding</u> (How will you assess students throughout and at the end of the lesson?)

- I will use thumbs up/side/down throughout both days of the lesson to check for understanding periodically.
- I will facilitate the explorations by asking guiding questions that both allow students to communicate what they understand and help them think about any misconceptions I notice in a different manner.
- Students will share several times to the whole class as well as communicate through writing with each other and the instructor. These forms of communication will serve as formative assessments for adjusting the lesson using appropriate scaffolding.

Key Ideas

Key ideas/important points	Teacher strategies/actions
Understanding the area model	Facilitate discussions that allow students to see how
and how it applies to fractions.	the area model works. Encourage students to
	investigate when the area model for Student D is the
	best case or when we arrive at a more reduced answer
	by using a model similar to Student A.

When a fraction is multiplied by	During the discussion about the rate problem,
a whole number <i>n</i> we are	encourage students to think about how multiplication
collecting <i>n</i> sets of the fraction	is simply an easier way to represent repetitive
which is repeated addition.	addition. How is that idea relevant to this situation?
Distributive property and how it	Scaffold this idea using 12×15 . This problem can be
applies to fractions as well as	easily calculated using mental math by taking (10 x
"FOIL".	15) and (2×15) and adding the two products
	together. How does this relate to fractions?

Guiding Questions

Good questions to ask	Possible student	Possible teacher responses
_	responses or actions	_
How can multiplication aid in the solution of this problem? (Referring to the	10/ 15 is the same a $2/3$ so we need to find $2/3$ of $3/4$. The word of in	What happens to the "threes" in the product? How is this evident referring to Student A's
POD).	mathematics means to multiply.	model?
Can we represent $2/3 x$	It seems like we should	Do you believe this is related to
4/5 in the same manner	be able to. I am having	reducing? Can $2/3 \times 4/5$ be
that Student A represented	trouble because if I start	reduced? What model of the
2/3 x ³ / ₄ ?	with 2/3 I don't know	four models presented will work
	how to take $4/5$ of the 2	for this case? Will this model
	shaded.	work for all cases?
Is it possible to find a	The first two could be	What about 2/3 of 3/4? Which
product of two positive	no or yes as students	scenario does this product fit?
numbers such that the	both those ideas. The	mind on any of the other
product is less than both	third will more then	mind on any of the other
of the numbers but greater	likely be yes as that is	all three cases
than the other? Greater	what they first learn	an unce cases.
than both numbers?	when estimating	
	products of whole	
	numbers.	
When dealing with mixed	We can multiply the	How does this work when we
numbers, how does the	whole number by the	multiply two mixed numbers
distributive property allow	whole number in the	together? Provide an example
us to calculate products of	mixed number and the	and show how the distributive
fractions?	fraction in the mixed	property aids in this product.
	number. These two	
	products can be added	
	together to obtain the	
	final product.	

Misconceptions, Errors, Trouble Spots

Possible errors or trouble spots	Teacher question/actions to resolve them
Students may not understand which	Prompt students to discuss the basic
representation of the four provided	multiplication algorithm for multiplication of
solutions best models the algorithm	fractions. Ask how the numerator relates to the
for multiplication of fractions.	shaded area and what the denominator relates to
	in the context of the problem.
Students may believe that any	Scaffold this to show it is a special case because
situation can be modeled in the	the products can be written as a reduced fraction.
manner that student A did.	Use an example that does not work to show what
	is meant by this. An example could be $\frac{1}{2}$ of $\frac{3}{4}$.
Students may not understand why	Discuss the idea that this is a constant rate so it
the $d = rt$ formula is graphed the way	would be graphed as a linear line. The rate is 3
it is and why the area model fails in	mi/hr based on the scenario. Ask students
this case.	guiding questions to point out the difference in
	this set up versus the previous one. (One is a part
	times a part and the other is greater than one times
	a part.)
Students may have a difficult time	Use more than one example to show how to
using the distributive property idea	perform this operation with multiplication of
for multiplication of fractions.	whole numbers first. Scaffold this by first
	multiplying a whole number times a mixed
	number and then a mixed number times a mixed
	number.

Part I:

During my lunch hour I usually walk $\frac{3}{4}$ a mile in 15 minutes. Today it started raining 10 minutes into my walk and was unable to finish. How many miles did I walk instead? Explain how you arrived at your conclusion. Does your answer make sense? Why or why not? Part II:

The following examples show four different student work samples. For each sample, determine what the student's thought process was and if it is correct model for this situation. If the thought process was not a correct model for this situation, adjust the model to make it accurate.

Part III:

Based on the area model from student D in the previous example, another student represented D = 3t as a graph with rate versus time. This student is certain that the answer should be $\frac{3}{18}$. We found that the answer was $\frac{1}{2}$. How can this be?

Extension:

Given that $A \ge B = C$, determine a scale for the number line in each of the following cases. Explain in detail how you arrived at your conclusion. Be prepared to share your answers with the whole class.

